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Abstract

The recent discovery of episodic slow slip and tremor in subduction zones has provided the
geophysics community with observations of previously unrecognized styles of fault slip. Because
slow slip events increase the stressing rate on the locked (seismogenic) portions of major subduc-
tion zones worldwide, they are garnering attention as a potentially important tool for assessing
seismic hazards in the US and elsewhere. There are many ways of generating slow slip events in
models of rate- and state-dependent friction, and at least three have been proposed: (1) “Standard”
steady-state velocity-weakening friction on a fault whoselength is properly “tuned”; (2) inelastic
dilation of fault gouge with increasing slip speed, accompanied by pore pressure reduction and dif-
fusive recovery; and (3) a transition from steady-state velocity weakening to velocity-strengthening
behavior at an appropriate slip speed. A discussed byRubin[2008], mechanism (1) requires rather
severe tuning of the fault length, at least for the friction law consistent with the most relevant low-
temperature lab experiments. Mechanism (3) has some theoretical justification, but not a lot of
supporting lab data for silicates yet. Here we explore mechanism (2). Dilatancy is a very attractive
mechanism for generating slow slip because, based on limited lab data, it is expected to dominate
rate-and-state friction at the low effective normal stresses inferred for slow slip source regions.

We use a simplified “membrane diffusion” approximation for pore fluid flow, where it is as-
sumed that the fault plane is bordered by a low-permeabilitygouge zone in which the pore pressure
varies linearly from its on-fault value to its far-field value. Pore pressure in this formulation is gov-
erned by two dimensionless parameters: The ratio of the timescale for fluid diffusion across the
low-permeability layer to the timescale for porosity changes on the fault surface (itself tied to the
timescale for changes in state), and a parameter that governs the amount of dilation for a given
change in state. The first ratio determines the extent to which the fault behaves as drained (no pore
pressure change) or undrained (no fluid flow) during changes in porosity, while the second mea-
sures the magnitude of the frictional strength change due topore pressure changes, relative to that
due to rate- and state-dependent friction changes, under undrained conditions. We find that for lab
values of the governing parameters, and pore pressures of a few MPa or less, dilatancy stabilizes
slow slip well into the region of parameter space where slip in the absence of dilatancy would have
been dynamic (and in fact out to the largest fault sizes we have been able to simulate). We find
also that the recurrence interval of slow slip events, suitably nondimensionalized, increases with
fault size following the same trend as in the absence of dilatancy (but extended to much larger fault
sizes). An analytical approximation for the maximum slip speed as a function of the fault size and
governing parameters matches the numerical simulations fairly well.

In parallel with this, I have been working with Paul Segall atStanford University on numerical
simulations that use true homogeneous diffusion, which is numerically much more demanding
than membrane diffusion. Qualitatively the simulations behave similarly. Using a linear stability
analysis for the homogeneous diffusion case, we obtained analytical expressions for the critical
stiffness and period of oscillation at neutral stability. These can be used to map values of the
governing parameters for homogeneous diffusion onto thosefor membrane diffusion, and vice
versa.
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1. Introduction

Recently observed episodic slow slip events (SSE), sometimes accompanied by deep low-
frequency tremors, in shallow subduction zones [e.g.,Hirose et al., 1999;Dragert et al., 2001;
Lowry et al., 2001] have been proposed to occur along subduction plate interfaces in the vicinity
of highly elevated pore fluid pressure. Several lines of evidence, including deep metamorphic
dehydration encountered by subducting slabs, and seismologically inferred highvp/vs and high
Poisson’s ratios, suggest the presence of near-lithostatic fluid pressure at the source areas of SSEs
and non-volcanic tremors.

Numerical simulations in the framework of rate- and state-dependent friction have demon-
strated that short-period aseismic deformation transients can emerge spontaneously when fluid
pressure is near lithostatic around the friction stabilitytransition [Liu and Rice, 2005, 2007;Shibazaki
and Shimamoto, 2007;Rubin, 2008]. Applying temperature-dependent wet granite [Blanpied et al.,
1998] and gabbro [He et al., 2007] rate and state friction parameters in a 2-D subduction earthquake
model with the “aging” version of evolution law,Liu and Rice[2007, 2009] produced episodic
SSEs where the velocity-weakening fault lengthW under highly elevated pore pressure is too
large for steady sliding but insufficient for dynamic instability; the fault response is determined
by the ratio betweenW and the critical nucleation sizeh∗. The detailed definition ofh∗ will be
described in the next section. Such numerical simulations can produce spontaneous SSEs with
aspects, such as recurrence period and cumulative slip, that are similar to field observations. All
the above numerical studies have assumed effective normal stress on the fault to be a time-invariant
property during the slow slip sequences. However, both fieldobservations and numerical calcu-
lations suggested that fluid pressure on the fault has much influence on the occurrence of SSEs
and tremors. In particular, the proposed high fluid pressure, is precisely the condition for which
Segall and Rice[1995] suggested that fault stabilization by induced suction from dilatancy during
increased shear rates becomes most important.

Sufficiently compact granular material dilate as they beginto shear. After a certain amount
of deformation, a critical state is reached where porosity and pore pressure are constant [Schofield
and Wroth, 1968]. For fluid-saturated materials, pore expansion willresult in a reduction in pore
fluid pressure and an increase in effective normal stress. This dilatancy-strengthening process has
been suggested to play a role in inhibiting rapid deformations of landslides [e.g.,Iverson et al.,
2000], glacier basal sediments [Clarke, 1987;Iverson et al., 1998] and fault gouges [Marone et al.,
1990;Lockner and Byerlee, 1994]. Sleep and Blanpied[1992] presented quantitative models of
earthquake cycles, in which pore pressure increases due to pore compaction during the interseismic
period until a Coulomb slip condition is satisfied, followed by a rapid slip event (model earthquake)
with pore pressure dropping to the initial level due to dilatancy.Sleep[1995] improved the model
by including the explicit instability condition for combined slip weakening, frictional dilatancy and
shear heating induced thermal pressurization [Sibson, 1973;Lachenbruch, 1980;Mase and Smith,
1987]. Segall and Rice[1995] incorporated both processes of dilatancy and pore compaction into
the rate and state friction model, to understand the conditions for unstable slip on saturated fault
gouge. They assumed that the actively slipping zone is bordered by a less permeable layer within
which pore pressure varies linearly from the level on the slipping interface to the ambient level
in the surrounding rock mass. This is called the “membrane diffusion” (or “lumped reservoir”)
approximation, previously used byRudnicki and Chen[1988] in an analysis of laboratory ex-
periments. Linearized perturbation analysis of a single-degree-of-freedom spring-slider model at
steady sliding shows that slip is always stable when the effective normal stress is smaller than a
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threshold which is determined by the fault gouge frictionaland hydraulic properties [Segall and
Rice, 1995]. The higher the pore pressure on the sliding interface, the more important dilatancy
is in stabilizing slip. Taylor and Rice[1998] first included dilatancy in a 2-D subduction fault
model with rate and state friction to study its effects on earthquake rupture in the radiation damp-
ing approximation [Rice, 1993]. They found that quasi-dynamic seismic rupture slows down or
even stops near where effective normal stress is lower than that in the seismogenic zone; without
dilatancy seismic slip of several meters would occur where the fault breaches the surface.

Building on Taylor and Rice[1998], Liu and Rice[2005b] andSegall and Rubin[2007], in
this study we analyze the conditions for spontaneous short-period aseismic transients on a fluid-
infiltrated subduction fault including dilatancy and pore compaction, with the “membrane diffu-
sion” approximation. We show, with a Cascadia-like subduction fault model, that episodic aseismic
transients can exist for a much broader range ofW/h∗ due to dilatancy stabilization. The cumu-
lative slip per episode and the recurrence period of modeledSSEs are comparable to those at the
sameW/h∗ without dilatancy. They further follow the approximately linear trend of increasing pe-
riod with W/h∗ beyond the aseismic-seismic boundary that is defined in the absence of dilatancy.
In contrast, the maximum slip velocity during SSE episodes can be several orders of magnitude
smaller than those at the sameW/h∗ without dilatancy. Furthermore, the difference in maximum
velocity among calculations with different dilatancy coefficients becomes more significant at large
W/h∗. Due to the effective stabilization at near-lithostatic pore fluid pressure, we expect aseismic
slips to appear for even infinitely largeW/h∗, given appropriate frictional and hydraulic parame-
ters.

2. Constitutive models

2.1 Rate and state friction

We use a single-state-variable form of the rate and state-dependent friction law, in which the
frictional resistanceτ is a function of the sliding velocityV and the state variableθ. In particular,

τ = σ̄f = (σ − p)

[

f0 + a ln

(

V

V0

)

+ b ln

(

V0θ

dc

)]

, (1)

where effective normal stress̄σ is the difference between the normal stress applied on the fault σ
and pore pressurep; a andb are rate and state friction parameters,V0 is a reference velocity anddc

is a characteristic slip distance over which state evolves.f0 is a nominal friction whenV = V0 at
steady state. In this study, for computational conveniencewe use the “aging” state evolution law,
which permits friction to evolve even on stationary contacts

dθ

dt
= 1 − V θ

dc

. (2)

The steady state frictionfss = f0 +(a− b) ln(V/V0) is reached whenθ = θss = dc/V . The consti-
tutive parametersa andb are interpreted as the instantaneous changes inf andfss, respectively, in
response to a velocity step:a = V (∂f/∂V )inst anda − b = V (dfss/dV ). Fora − b > 0, the slid-
ing surface is steady state velocity-strengthening and slip is stable. Fora − b < 0, the interface is
steady state velocity-weakening and unstable slip is possible when, for a single-degree-of-freedom
spring-slider system subject to small perturbations from steady sliding, the spring stiffnessk is less
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Figure 1:Geometry anda − b distribution for the 1D spatially periodic fault model. Thefault is locked at−8W <
ξ < 0, velocity-weakening at0 ≤ ξ ≤ W , velocity-strengthening atW < ξ ≤ W ′, and loaded by a constantVpl at
W ′ < ξ < W ′ + 8W . W ′/W = 4 for most simulation cases if not otherwise stated.a − b linearly increases from
-0.004 to 0.012, andb = 0.034 is uniform between0 ≤ ξ ≤ W ′.

than the critical stiffnesskcr = σ̄(b− a)/dc. A critical cell sizeh∗ is defined by equatingkcr to the
effective stiffnessk = γµ′/h at the center of a crack of lengthh. Thus

h∗ = γ
µ′dc

σ̄(b − a)
. (3)

Here,γ is a model-dependent constant of order unity;γ = 2/π when using the cellular basis set for
slip on a crack that is not too close to the surface inRice[1993]. µ′ is the effective shear modulus
(µ′ = µ for anti-plane strain andµ/(1 − ν) for plane strain deformation, whereν is Poisson’s
ratio); weµ = 30 GPa andν = 0.25. In the definition ofh∗, we use the average value〈b − a〉 over
a fault length whereb − a depth distribution is not uniform.

2.2 Governing equations for the fluid

We follow Segall and Rice[1995] andTaylor and Rice[1998] in the treatment of pore fluid
diffusion and pore compaction associated with friction evolution. For the 2-D model considered
here, we assume that fluid (water) flux is limited to the direction ζ perpendicular to the fault and
that there is no flux in the directionξ parallel to the fault (Figure 1). The conservation of fluid mass
implies that

∂qm

∂ζ
+

∂m

∂t
= 0, (4)

wherem is the fluid mass per unit volume of rock, andqm is the fluid mass flux per unit area. Fluid
flux is related to the pore pressure gradient via Darcy’s law:

qm = −ρκ

η

∂p

∂ζ
, (5)

whereρ is the fluid density,κ is the permeability for diffusion normal to the fault andη is the fluid
viscosity. The rate of fluid mass change can be written as

∂m

∂t
= φ

∂ρ

∂t
+ ρ

∂φ

∂t
= ρβ

(

∂p

∂t
+ Λ

∂T
∂t

+
1

β

∂φpl

∂t

)

(6)

where porosityφ is the volume ratio between the pore space and the reference composite andT is
temperature.βf ≡ (1/ρ)(∂ρ/∂p)T is the isothermal fluid compressibility,γf ≡ −(1/ρ)(∂ρ/∂T )p

is the fluid expansion coefficient at constant pressure,βφ ≡ (1/φ)(∂φ/∂p)T is the elastic pore
compressibility andγφ ≡ (1/φ)(∂φ/∂T )p is pore expansion coefficient. Parametersβ andΛ are
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defined asβ = φ(βf + βφ), Λ = (γφ − γf )/(βf + βφ). Here, the change in porosity is written as
the sum of a plastic componentφpl and an elastic component, which is related to the changes inp
andT via βφ andγφ respectively.

Substituting (5) and (6) into (4), we get the pore pressure diffusion equation with a source
term from the plastic porosity change and temperature change

c
∂2p

∂ζ2
−

(

∂p

∂t
+ Λ

∂T
∂t

)

=
1

β

∂φpl

∂t
, (7)

wherec = κ/(ηβ). In the following analysis, we neglect the∂T /∂t term as the temperature
variation during slow slip events is considered to be small.For the flux normal to the fault, we
make the “membrane diffusion” approximation so that equation (7) can be written as

∂p

∂t
= −p − p0

tp
− 1

β

∂φpl

∂t
. (8)

Here tp = ηβd2

p/κ is a characteristic time forp to re-equilibrate with its ambient valuep0. As
discussed inSegall and Rice[1995], this approximation is appropriate when the slipping zone
is bordered by a layer of thicknessdp less permeable than either the slipping interface or the
surrounding rock mass, and times are long compared to the diffusion time across that layer.

We model the dilatancy term following the analysis inSleep[1995] andSegall and Rice
[1995], which build on observations from fault gouge friction experiments at room temperature
[Marone et al., 1990]. The plastic component of porosity is assumed to evolve with the state
variableθ as

φpl = φ0 − ǫ ln

(

V0θ

dc

)

, (9)

whereφ0 is a reference porosity andǫ is the dilatancy coefficient. Equation (8) then becomes

∂p

∂t
= −p − p0

tp
+

ǫ

β

1

θ

dθ

dt
. (10)

The rate and state friction law (equations (1) and (2)) and pore pressure evolution (equation
(10) are implemented together with the quasi-dynamic elastic relation between shear stress and slip
distributions on the fault, to solve for the history of slip velocity, shear stress and pore pressure on
the modeled fault in earthquake cycles including slow slip events. A radiation damping term that
is dynamically correct in instantaneous response and in producing quasi-static long-term response
is introduced followingRice[1993] andLapusta et al.[2000].

2.3 Nondimensional parameters

As is evident from equation (10), two competing factors control the rate of pore pressure
change. The first is the rate at whichp communicates withp0 at the characteristic diffusion time
scaletp. The second is the rate at whichp changes due to the opening or closing of pore spaces
as the state variableθ evolves at the time scaledc/Vss. Vss is sliding velocity at steady state. The
drainage of the sliding interface is thus characterized by anondimensional parameter

T = tp/(dc/Vss). (11)
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WhenT ≪ 1, the fault gouge is nearly drained, and there is no change in pore pressure. When
T ≫ 1, the system is approaching an undrained condition, and there is no change in fluid mass.
On a completely drained faultp instantaneously re-equilibrates withp0; solutions to the coupled
equations are essentially the same as those to the system without dilatancy.

By comparing theMarone et al.[1990] laboratory data to their simulations based on the above
analysis,Segall and Rice[1995] estimated the dilatancy coefficientǫ to be1.7 × 10−4 for quartz
sand under drained conditions. Recently, velocity-stepping friction experiments were conducted on
various gouge layer compositions, including angular quartz sand, kaolinite gouge, Westerly granite
gouge and clay-rich materials from ODP leg 1175 [Samuelson et al., 2008]. Early results from the
clay-rich ODP gouge indicate a trend ofǫ decreasing with the normal stress. Estimated dilatancy
coefficient is within the range of10−5 to10−4, consistent withǫ inferred from previous experiments
[Marone et al., 1990;Lockner and Byerlee, 1994]. Bulk compressibilityβ [= φ(βf + βφ)] can
be estimated following the choices inSegall and Rice[1995]. Take water compressibilityβf ∼
5 × 10−4 MPa−1, elastic pore compressibilityβφ ∼ 10−2 MPa−1 for crystalline rocks that are
more representative of fault gouge at seismogenic depths, and a low porosityφ = 0.05 due to
greater densification at depths caused by solution transport and mineralization processes, the bulk
compressibility isβ ∼ 5 × 10−4 MPa−1. We note thatǫ andβ enter equation (10) only through
the ratioǫ/β, which has the unit of pressure. Therefore, in the followingcalculations, instead of
specifying individual values ofǫ andβ, we only specifyǫ/β, in the vicinity of 0.34 MPa based on
the above estimates.

Including the pore pressure change with slip, we can write the peak-to-residual stress as
∆τ p−r = σ̄0∆fp−r − f0∆pp−r and the total stress drop (difference between initial and residual
stresses) as∆τ i−r = σ̄0∆f i−r − f0∆pi−r. For a hypothetical velocity jump fromV1 to V2 asso-
ciated with an expanding nucleation zone, the maximum pore suction during the state evolution
process on a completely undrained fault is

∆pp−r = (ǫ/β) ln(V2/V1), (12)

when slip is significantly larger thandc. Following the approximations of∆fp−r ≈ bσ̄0 ln(V2/V1)
and∆f i−r ≈ (b−a)σ̄0 ln(V2/V1) appropriate for large velocity jumps [Rubin and Ampuero, 2005;
Ampuero and Rubin, 2008], the above two stress drops can be written as

∆τ p−r ≈ bσ̄0(1 − E) ln(V2/V1), (13)

and
∆τ i−r ≈ bσ̄0(1 − a/b − E) ln(V2/V1), (14)

where the nondimensional parameter

E = f0(ǫ/β)/(bσ̄0) (15)

measures the relative contributions from pore suction and friction evolution.

Before performing numerical calculations, some aspects ofthe nucleation process with di-
latancy can be predicted based on the above equations. WhenE ≪ 1 − a/b, pore pressure
changes are irrelevant because the stress drops are dominated by the friction evolution term. When
1 − a/b < E < 1, dilatancy might inhibit nucleation by decreasing the mechanical energy release
rate even though the fracture energy is still dominated by the stress drop due to friction. In the case
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of a completely undrained fault as shown in equations (13) and (14), the total stress drop becomes
negative which predicts no instability. WhenE > 1, if T is sufficiently large that the fault is
effectively undrained at seismic slip rates, then pore pressure changes will be certain to impede the
nucleation, which may develop into slow slip events rather than earthquakes.

The above arguments show that dilatancy has several appealing attributes for promoting the oc-
currence of slow slip events. First, with certain degree of drainage (roughly speaking,tp/(dc/V ) >
1) the nondimensional parameterE controls whether the nucleation can develop into a dynamic
rupture or a slow slip event. Near-lithostatic pore pressure in the slow slip source region implies
largeE, and would help to promote slow slips. For example, if we takesome representative values
f0 = 0.6, ǫ = 1.7 × 10−4, β = 5 × 10−4 MPa−1, b = 0.006 as inferred bySegall and Rice[1995],
σ̄0 < 33 MPa will result inE > 1. Second, whenE > 1 is satisfied, slip velocity during the slow
slip events can vary several orders of magnitude between, approximately,Vpl andVdyn (dynamic
slip rate), as the drainageT = tp/(dc/V ) varies withV .

3. Simplified spectral model

To investigate the effects of dilatancy on aseismic deformation transients, we first study the
contributions of various parameters in a simplified model fault that is locked forξ < 0 and loaded
with a constant rateVpl for ξ > W ′, as shown in Figure 1. Rate and state friction is applied
on 0 ≤ ξ ≤ W ′, where slip is velocity-weakening (a − b < 0) on 0 ≤ ξ ≤ W and velocity-
strengthening (a − b > 0) on W < ξ ≤ W ′. Specifically,a − b linearly increases from−0.004
to 0.012,b = 0.034 anddc = 0.04 mm are uniform between0 ≤ ξ ≤ W ′. Results based on a
more realistic Cascadia-like 2-D subduction fault with depth-variable friction parameters and free
surface effect will be presented in the next section.

Several length ratios shown in Figure 1 are of different extent of relevance to the simulation
results. First, the fault lengths of the “locked” and “loaded” parts have very minor effects, as
verified numerically, when they are much larger thanW . We use8W for both segments in the
spatially periodic model. Second, as pointed out byRubin [2008], the ratioW ′/W continues to
influence the results even when it gets sufficiently large, because the enforcedV = Vpl at ξ > W ′

introduces a discontinuity in velocity gradientdV/dξ at ξ = W ′, which has no counterpart in
nature. Among the numerically calculated physical properties,W ′/W has relatively small effects
on the sliding pattern (i.e., stable, periodic, or unstable) and the maximum velocity during aseismic
slip events.W ′/W has a more significant influence on the recurrence interval ofaseismic events,
but to the first order that can be accounted for by its influenceon the steady slip speedVss at a
representative point withinW (e.g.,W/2). Rubin[2008, eqn. 22] showed that for infinitely locked
and loaded regions andW ′/W ≫ 1, the steady slip speed at the center ofW is

Vss ≈
√

2

π

(

W

W ′

)1/2

Vpl, (16)

and recurrence period varies inversely with thisVss. For W ′/W = 4 used in this study,Vss ≈
0.23Vpl at ξ = W/2 is used in the definition ofT (equation 11).

Finally, we learned from 2-D subduction fault simulations [Liu and Rice, 2007] that the ra-
tio between the length of the fault that slides at velocity-weakening under extremely high fluid
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pressure at the critical nucleation size, namely

W

h∗
=

πW 〈b − a〉 σ̄0

2µ′dc

, (17)

also affects the fault response. AsW/h∗ increases, fault slip proceeds from steady state, to simple
periodic, to complex periodic or aperiodic, to seismic. We show that, in addition to parametersE
andT that are directly related to the pore pressure evolution,W/h∗ continues to be an important
factor in determining the fault response.

3.1 The effect ofW/h∗

For the simplified spectral model, the averageb − a over W is 〈b − a〉 = 0.002. We keep
W = 20 km anddc = 0.04 mm in all simulations and varȳσ0 to achieve a wide range ofW/h∗.
For example,̄σ0 = 0.6 MPa results inW/h∗ ≈ 23.5.

For selected combinations of dilatancy parametersE and T , Figure 2 summarizes (a) the
maximum slip rate, normalized byVpl, during episodes of modeled SSEs, and (b) the recurrence
period, defined as the interval between two adjacentVmax peaks in time domain, as functions of
W/h∗, compared to calculations without the dilatancy effect. When pore pressure is assumed to
be time-invariant (black solid dots), similar to the results inLiu and Rice[2007] andRubin[2008],
simple periodic oscillations withVmax > Vpl start to appear atW/h∗ & 3, followed by “period
doubling” oscillations (two dots at oneW/h∗) for W/h∗ ≈ 16. The difference betweenVmax of
two events in one “period doubling” episode increases withW/h∗. The vertical dashed line at
W/h∗ ≈ 24 represents the “abrupt” jump from aseismic to seismic slip rates, and is approximately
(12/π2)[b/〈b−a〉]h∗, similar to that estimated byRubin[2008] withW ′/W = 5 and linear gradient
in a/b.

Open symbols represent calculations including the dilatancy effect. We choose three sets of
parameters:E = 1, T = 0.23; E = 1, T = 0.046; andE = 0.1, T = 0.23, to investigate
how different combinations of dilatancy and diffusion parameters affect the process. A general
observation from all the dilatancy calculations in Figure 2(a) and (b) is that aseismic oscillations
now exist over a much broader range ofW/h∗. For all the three sets of parameters,Vmax remains
less than103Vpl up to W/h∗ ≈ 70, the largest in our calculations to maintain a resolution of
Lb/∆ξ = (µ′dc/bσ̄0)/∆ξ > 3 (most cases have the ratio between 5 and 9);∆ξ is grid spacing.
We expect thatVmax remains aseismic for sufficiently larger values ofW/h∗, whenE andT are
both of order 1. AtW/h∗ . 23, slow slip events produced with the inclusion of dilatancy appear
as simple periodic or periodic doubling episodes, with small variations inVmax andTcyc. Vmax is
generally slower than those with constantσ̄; Vmax atW/h∗ = 23.5, E = 1 andT = 0.23 is nearly
one order of magnitude smaller. AtW/h∗ > 23, Vmax andTcyc continue to increase, with much
greater variation ranges at eachW/h∗.

3.2 The effects ofE and T

Figure 3 shows the variation of maximum aseismic slip velocity and recurrence period withT
(E = 1 fixed) andE (T = 0.23 fixed), respectively, atW/h∗ = 23.5.

For T ≪ 1, fluid pressure quickly re-equilibrates with the ambient level and thus the fault
response approaches that of the no-dilatancy situation. InFigure 3(a), the smallestT = 0.0023
case produces period doubling aseismic sequences, with thehigh and low velocities at18Vpl (=
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Figure 2:(a) Maximum slip velocityVmax (normalized byVpl) and (b) recurrent periodTcyc as a function ofW/h∗

for simulation cases with (open symbols) and without (blacksolid dots) dilatancy. Several combinations of nondimen-
sional parametersE andT are chosen in the dilatancy cases: red circlesE = 1, T = 0.23; blue diamondsE = 1,
T = 0.046; green triangleE = 0.1, T = 0.23. (c) Tcyc normalized by neutral stability periodTns(E, T, a/b), for
fixedE = 1 anda/b = 0.94. Open cyan hexagrams represent cases in Figure 3(c). Solid magenta hexagrams are the
same cases but with adjustedW/h∗ according to equation (18). (d) Same as in (c), but the variation in E; T = 0.23
anda/b = 0.94 are fixed.W/h∗ for the dilatancy cases in (b) are also adjusted to plot in (c)and (d).
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2.12 × 10−8 m/s) and5.2Vpl and recurrence periods of 0.80 and 0.63 yr, respectively. These are
very close to the velocities of19Vpl and5.7Vpl and recurrence periods of 0.81 and 0.64 yr, for the
sameW/h∗ = 23.5 but without dilatancy. AsT increases toward 1, the averageVmax decreases
while the recurrence period remains relatively constant. This behavior can be explained by the
amplitude and duration of pore suction and the following recovery stage. Figure 4(a) shows the
change in effective normal stress∆σ̄ = −(p − p0), normalized by the initial̄σ0, at ξ = W/4, for
sequences of aseismic events modeled atT ≤ 1. At T increases from 0.0023 to 0.23, the deviation
of σ̄ from its ambient level becomes higher and takes longer durations. SmallerVmax is resulted
when the fault slips at a higher̄σ. However, due to the compensating effects of smaller velocity
and longer sliding duration, the recurrence period remainsrelatively constant forT . 1.

For T ≫ 1, the fault zone is considered nearly undrained so that pore suction remains for a
much longer duration than the state evolution time, and sliding velocity approaches steady state.
In Figure 3(a),Vmax (for the velocity-weakening zone) approaches its steady state value ofVss ≈
Vpl/3 at ξ = W . Figure 4(b) shows∆σ̄/σ̄0 for several cases withT > 1. The amplitude of∆σ̄
does not change much asT increases from 1.15 to 3.45, but the duration whenσ̄ is off its ambient
level becomes longer for largerT . Thus, although the variation in velocity is nearly negligible at
T > 1, sliding at velocities higher thanVss for longer durations will result in larger cumulative slip
that implies a longer recurrence period. This explains the increase inTcyc for T > 1.

Considering the dilatancy effect,Segall et al.[2010] derived the critical stiffnesskcr and neu-
tral stability periodTns as functions of parametersE andT , using linearized stability analysis for
a single-degree-of-freedom spring-slider system. Their analytical solutions predict that forE = 1
anda/b = 0.94 as in the simulations of the left column in Figure 3, the normalized critical stiffness
kdilat

cr /kdrain
cr quickly drops from 1 to nearly 0 asT increases from 0.1 to 100;kdilat

cr /kdrain
cr = 0.05

at T = 20. Thus, for the particular parametersE anda/b, the equivalentW/h∗ = Wkcr/(γµ′)
decreases asT becomes larger than 0.1, resulting in a decreasing ratio ofTcyc/Tns for T > 0.1 as
shown in Figure 3(c). As a correction, for each simulation shown in the left column of Figure 3,
we calculated the equivalent〈W/h∗〉dilat using the proportionality

〈W/h∗〉dilat

〈W/h∗〉drain
=

kdilat
cr

kdrain
cr

(E, T, a/b). (18)

As shown in Figure 2(c), each open cyan hexagram originally aligned atW/h∗ = 23.5 is adjusted
to a smaller equivalentW/h∗ and is represented by a solid magenta hexagram. The largest adjust-
ment from〈W/h∗〉drain = 23.5 to 〈W/h∗〉dilat ≈ 3.3 occurs for the largestT ≈ 7. We can see
from Figure 2(c) that the adjustedTcyc/Tns versusW/h∗ for choices ofT over three orders of mag-
nitude agrees very well with the trend defined by the no-dilatancy and limited selections of (E, T )
simulations. Adjustments to the dilatancy cases as shown inFigure 2(b) and (c) are negligible due
to the smallT ≤ 0.23.

The effects of parameterE (T = 0.23 fixed) are similar to that of parameterT . ForE ≪ 1,
bothVmax andTcyc approach the values without dilatancy because the pore suction is negligible
compared to the initial̄σ0. The averageVmax decreases asE increases toward 1, as higher pore
suction is induced by larger porosity changes (Figure 4(c)). Recurrence period remains relatively
constant forE < 1 due to the compensating effects of smaller velocity and longer sliding duration.
Tcyc increases withE > 1, as the increase in event duration becomes much more dominant than the
small variations in sliding velocity. The increase ofTcyc with E can be approximately adjusted by
the neutral stability periodTns, as opposed to the decreasing trend in Figure 3(c), because for the
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fixedT = 0.23 anda/b = 0.94 the variation of critical stiffness withE is very small. For example,
kdilat

cr /kdrain
cr ≈ 0.83 atE = 50. As a result, the adjustments inW/h∗ are relatively small as shown

in Figure 2(d). The adjustedTcyc/Tns versusW/h∗ still agrees well with the trend defined by the
no-dilatancy and limited choices of (E, T ) cases.

4. 2-D subduction fault model

In this section, we investigate the effect of dilatancy and pore compaction on a 2D fluid-
infiltrated subduction fault. The fault model is set up similarly to that inLiu and Rice[2007,
2009], and is summarized here in Figure 5. We simulate the thrust fault by a planar frictional
interface in an elastic half-space, with a 2-D plane strain assumption. As a simple representation
of the northern Cascadia shallow subduction geometry, the fault dips at a constant angle of12o.
ξ now starts from the trench and aligns with the down-dip direction. Rate and state-dependent
friction is applied on the interface fromξ = 0 to ξ = W ′ = 300 km. Further down-dip the fault is
loaded by a constant plate convergence rateVpl = 37 mm/yr. Friction parametersa, a − b anddc

are functions of the down-dip distanceξ, and are invariant with time. For simplicity, we consider
the elastic effect of slip on changing only the shear stress;variation in effective normal stress̄σ
being the result only of fluctuation in pore pressurep.

Friction experimental data for gabbro under hydrothermal conditions have recently been re-
ported byHe et al.[2007]. A tentative application of the gabbro data, as the first set available for
a reasonable representation of the seafloor, to a Cascadia-like subduction fault model can produce
slow slip events with surface deformation similar to those observed by GPS stations, while models
using the wet granite data [Blanpied et al., 1998], which, for lack of a suitable alternative, has
been the basis for most previous calculations, result in a very poor fit [Liu and Rice, 2009]. Thus,
in this paper, we apply theHe et al.[2007] gabbro friction data in the 2-D fault model. Using a
Cascadia subduction zone thermal profile [Peacock et al., 2002], the temperature-dependenta − b
is converted to be depth-dependent as shown in the top panel of Figure 5(b). SeeLiu and Rice
[2009] for detailed discussions of the choice ofa − b and application in the 2-D subduction fault
model. In the velocity-weakening regime,a − b remains as a constant of−0.0035 to ∼ 95 km,
followed by a gradual transition to velocity-strengthening at∼ 180 km.a− b is about 0.005 at the
down-dip end of the modeled faultW ′ = 300 km. Direct effecta is assumed to increase linearly
with the absolute temperature:a = 5.0 × 10−5(T + 273.15), following an Arrhenius activated
process at asperity contacts on the sliding surface [Rice et al., 2001]. a is also converted to be
depth-dependent using thePeacock et al.[2002] thermal profile.

The down-dip distribution of initial effective normal stress σ̄0 is determined following the
discussion of along-dip elevated fluid pressure inLiu and Rice[2009], and an example is shown
in the middle panel of Figure 5(b). Near the surface and in most part of the seismogenic zone,
pore pressurep is assumed to be the maximum between the hydrostatic pressure 10[MPa/km]×z
and 28[MPa/km]×z − σ̄eff ; σ̄eff is a constant level of effective normal stress at depth, taken as
50 MPa in this paper. The low effective normal stress zone extends some distance up-dip (W )
and down-dip from the friction stability transition, approximately consistent with the seismically
inferred depth range of near-lithostatic fluid pressure in northern Cascadia [Audet et al., 2009]. σ̄
resumes tōσeff = 50 MPa down-dip toW ′ = 300 km.

Similar to that in the simplified spectral model,W/h∗ as defined in equation (17) is an impor-
tant parameter that determines whether the system can produce self-sustained aseismic oscillations.
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〈b − a〉 is the averageb − a overW . For thea − b distribution shown in Figure 5(b), model pa-
rametersW , σ̄0 anddc in the low effective normal stress zone are related via equation (3). We first
chooseW that is in a reasonable agreement with the petrologically and seismically estimated ex-
tent of near-lithostaticp region. That is a few tens of kilometers up-dip from the stability transition.
For each fixedW , 〈b − a〉 is thus determined.̄σ0 anddc are then varied accordingly to result in a
range ofW/h∗ that allow quasi-periodic aseismic events. On the rest of the fault,dc is uniformly

dc =
π(b − a)maxσ̄0h

∗

0

2µ′
, (19)

where(b − a)max = 0.0035 is the maximum velocity-weakening value, andh∗

0
is a fixed factor

(16 in all calculations) times the computational grid size to assure computed results are free from
grid discretization effect. In the example shown in Figure 5(b), W = 40 km, dc = 0.2 mm in the
σ̄0 = 2.5 MPa zone such thatW/h∗ ∼ 16. dc = 13.74 mm elsewhere on the fault.

4.1 2-D results without dilatancy

A general fault response to the above loading conditions andmodel parameters is that mega-
thrust earthquakes rupture the entire seismogenic zone every few hundred years, and quasi-periodic
aseismic transients, mostly limited to within the low̄σ0 zone, appear every a few years in the
interseismic period.

Four groups of calculations withW = 35, 40, 50 and 55 km are performed in the range of
W/h∗ = 6 to 16, which allows spontaneous aseismic transients. Threerepresentative properties
of transients: maximum slip velocityVmax, slip δ at the center ofW accumulated whenVmax

exceeds2Vpl, and recurrence periodTcyc, vary significantly for a wide spectrum of choices ofW ,
low σ̄0 anddc. The general trend is that all three properties increase with W/h∗, which has also
been observed from calculations using the wet granite friction data [Blanpied et al., 1998], and is
shown in Figure 7 (solid gray symbols) for reference. At the sameW/h∗, variations with different
choices ofW are relatively large, compared to those using the granite data, because the velocity-
weakeninga−b follows a gradual increase to neutral stability over the entire length ofW . Detailed
discussions of modeled transient properties and comparison of calculated surface deformation to
GPS observations in northern Cascadia can be found inLiu and Rice[2009].

4.2 2-D results with dilatancy

The introduction ofE andT adds to the vast parameter space that needs to be explored to
model the properties of slow slip events. In this paper, we use a constantW = 40 km, which, in
combination with appropriate choices ofσ̄0 anddc, has been shown to produce surface deforma-
tions in reasonable agreement with GPS observations in northern Cascadia [Liu and Rice, 2009].
Furthermore, with the knowledge that fault response approaches the non-dilatancy situation at
T ≪ 1 and steady state atT ≫ 1 (Figure 3), we focus on the intermediate degree of drainage,that
is, T of order unity.

Figure 6 shows sequences of slow slip events for 100 years within the interseismic period,
using parametersW = 40 km, σ̄0 = 2.5 MPa anddc = 0.2 mm (thusW/h∗ ∼ 16), as shown
in Figure 5(b), and(ǫ/β)/σ̄ = 0.04 (ǫ/β = 0.1 MPa andE = 0.63 in the low σ̄0 zone). Two
megathrust earthquakes occur at∼ 224 yr and 655 yr, with the maximum seismic velocity about
0.1 m/s (not shown here). In the interseismic period,Vmax oscillates betweenVpl and the peak
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aseismic rate of∼ 10Vpl, which is nearly 3 orders of magnitude smaller than its counterpart without
dilatancy. The middle panel shows slipδ at the center ofW accumulated during each episode when
Vmax exceeds2Vpl. The bottom panel shows the recurrence periodTcyc, defined as the interval
between two successive events whenVmax reaches the peak values. The moderate variations inδ
andTcyc are due to the interseismic strength evolution, including evolution of pore pressure, in the
low σ̄ zone and up-dip in the nearly locked zone. From the selected interseismic time windows that
are free of the earthquake nucleation and postseismic relaxation effects, we make the histograms
of δ andTcyc, identify their maximum likelyhood values and record the maximum and minimum
of each property as its variation range.
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Figure 6:Spontaneous short-period slow slip events in a 100-yr interseismic period, using gabbro friction data. Initial
σ̄ anddc distributions are shown in Figure 5(b). In the low̄σ = 2.5 MPa zone, dilatancy parameterǫ/β = 0.1 MPa
(thus(ǫ/β)/σ̄ = 0.04), corresponding to open red diamond atW/h∗ ∼ 16 in Figure 7), drainageT = tp/(dc/Vss) =
0.23. (Top) Maximum slip rate. (Middle) Cumulative slip at the center of velocity-weakening low̄σ0 zone, when
Vmax > 2Vpl. (Bottom) Recurrence interval.

Using constantW = 40 km andT = 0.23, three groups of calculations with(ǫ/β)/σ̄0 =
0.02, 0.04 and 0.1 in the low̄σ0 zone, corresponding to an averageE = 0.31, 0.63 and 1.57
respectively are summarized (open diamond symbols) in Figure 7. Outside the low̄σ0 zone, a
uniform ǫ/β = 0.1, 0.2 and 0.5 MPa is used, respectively, so that the influence from earthquakes
is roughly the same. For reference, solid gray symbols represent results from calculations without
dilatancy; spontaneous aseismic events are present withinthe rangeW/h∗ ∼ 6 to 16 [Liu and Rice,
2009]. For each group of(ǫ/β)/σ̄0 (constantE), σ̄0 anddc are varied according to equation (17)
to result inW/h∗ ≈ 8, 12.8 ... 48. The cumulative aseismic slipδ and recurrence periodTcyc

both increase withW/h∗ (Figure 7(a) and (b)), following the trend of the non-dilatancy situation.
The lower limit ofW/h∗ for the onset of spontaneous aseismic transients is slightly larger in the
dilatancy situation due to its stabilizing effect. Dramatic differences exist in the maximum velocity
reached during transients. For example, without dilatancyVmax quickly approaches seismic rate
(> 10−3 m/s∼ 106Vpl) asW/h∗ increases toward 16, whileVmax is less than102Vpl at the same
W/h∗ with dilatancy. The stabilizing effect is more prominent asW/h∗ increases beyond the no-
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dilatancy boundary; atW/h∗ ∼ 32, Vmax ≈ 102.8Vpl for (ǫ/β)/σ̄0 = 0.02 andVmax ≈ 101.3Vpl for
(ǫ/β)/σ̄0 = 0.1. For the small(ǫ/β)/σ̄0 = 0.02, log

10
(Vmax/Vpl) approximately follows a linear

increasing trend withW/h∗, which is supported byVmax ∼ 5×10−5 m/s∼ 104.5Vpl atW/h∗ ∼ 64
(not shown in Figure 7). Following such a linear trend, seismic rate can be reached atW/h∗ ∼ 80.
The rate at whichVmax increases withW/h∗ becomes smaller for larger(ǫ/β)/σ̄0. In particular,
for calculations with the same(ǫ/β)/σ̄0 (e.g., 0.1), thelog

10
(Vmax/Vpl) versusW/h∗ trend appears

to approach a plateau, indicating aseismic slip at infinitely largeW/h∗.

Figure 8 illustrates the slip velocity and pore pressure evolution during one modeled transient
event, with dilatancy parametersT = 1.0, (ǫ/β)/σ̄0 = 0.04 in the lowσ̄0 = 2.5 MPa anddc = 0.2
mm zone. Only the depth range involved in the transient slip is plotted. The friction stability
transition is at down-dip 180 km, and the low̄σ0 zone extends from 140 to 215 km. A major
nucleation front first appears at down-dip∼ 170 km and migrates up-dip within the low̄σ zone
long before the maximum velocity is reached. A secondary nucleation front, with smaller velocity
and slower down-dip migration speed, shows up when the majornucleation front has reached
down-dip∼ 155 km. After the two nucleation fronts merge and reach a maximum velocity of
∼ 2.5× 10−8 m/s, slip propagates in both up-dip and down-dip directionsalong the fault. The up-
dip propagation continues for a short distance before it encounters the abrupt increase toσ̄0 = 50
MPa; meanwhile the down-dip propagation extends to the stability transition before the velocity
decreases to be aroundVpl. Both the propagation speed and sliding velocity are comparable along
the up-dip and down-dip directions, suggesting approximate stress drops associated with the slow
slips. The general feature of pore pressure variation, as represented by∆σ̄ = −(p − p0) in Figure
8(b), is very similar to those of slip velocity evolution in (a) as the change inp is directly related
to the change in state variable by equation (10). Along the major nucleation front, pore pressure
drops as the fault slips faster due to the increased porosityand insufficient fluid supply in the
corresponding state evolution time scale to refill the pores. As the nucleation front passes by
and velocity returns to the level nearVpl, we observe a transient phase of pore pressure rise of a
smaller amplitude because the magnitude of the velocity drop is smaller than that of the velocity
rise associated with the nucleation front. Along the down-dip propagation front, pore pressure drop
and rise are of the similar amplitude (<∼ 0.05 MPa), as a result of similar magnitude of velocity
increase and subsequent decrease.

5. Conclusions

Frictional and hydraulic conditions for spontaneous aseismic deformation transients are ana-
lyzed on a fluid-infiltrated fault including dilatancy and pore compaction in the framework of rate-
and state-dependent friction, with the “membrane diffusion” approximation.

Using a simplified model fault which is locked at one end and loaded with a constant rate at
the other end (the locked and loaded segments are much longerthan the part where rate and state
friction applies), we found that with dilatancy aseismic transients can exist beyond the aseismic-
seismic boundary that is defined in the absence of dilatancy.The ratio between the length of the
fault that slides at velocity-weakening under high fluid pressure and the critical nucleation patch
sizeW/h∗ continues to be an important parameter. Simple periodic, period doubling, aperiodic
aseismic oscillations appear asW/h∗ increases. Both the transients maximum slip velocity and the
recurrence period increase withW/h∗, with the more significant variations at largerW/h∗. Two
other important parameters are (1)T = tp/(dc/Vss), the ratio between the characteristic diffusion
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time scale for pore pressurep on the sliding interface to equilibrate with its ambient level and
the state variable evolution time scale at steady state velocity, and (2)E = f0(ǫ/β)/(bσ̄0) which
measures the relative contributions to the peak-to-residual stress drop from pore suction and from
friction evolution. We showed that parametersT andE have similar effects on the maximum
velocity Vmax and recurrence periodTcyc of modeled aseismic transients.Vmax decreases asT
or E increases toward 1.Tcyc remains relatively constant forT (or E) less than 1, due to the
compensation effects of smaller velocity and longer sliding duration.Tcyc increases forT (or E)
greater than 1, as the pore suction amplitude remains nearlyconstant but for a longer duration. The
variation ofTcyc with T andE can be explained the analytical neutral stability periodTns that is
derived for a single-degree-of-freedom spring-slider system with dilatancy.

Using a Cascadia-like 2-D subduction fault model with the rate and state frictional properties
measured for gabbro gouges under hydrothermal conditions,we showed that episodic aseismic
transients can also exist for a much broader range ofW/h∗ due to dilatancy stabilization. The
cumulative slip per episodeδ and the recurrence periodTcyc of modeled transients are comparable
to those at the sameW/h∗ without dilatancy. They further follow the approximately linear trend
of increasingδ and Tcyc beyond the aseismic-seismic boundary defined under the no-dilatancy
condition. In contrast,Vmax during transients can be several orders of magnitude smaller than
those at the sameW/h∗ without dilatancy. The difference inVmax becomes more significant at
largeW/h∗.

Publications resulting from work carried out under this award

Liu, Y., A. M. Rubin, and J. R. Rice, Role of fault gouge dilatancy in subduction zone aseis-
mic deformation transients, submitted toJ. Geophys. Res., accepted pending minor revisions
05/07/2010.

Segall, P., A. M. Rubin, A. M. Bradley, and J. R. Rice, Dilatant strengthening as a mechanism
for slow slip events, submitted toJ. Geophys. Res., accepted pending minor revisions.
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